Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
China Journal of Chinese Materia Medica ; (24): 4378-4383, 2015.
Article in Chinese | WPRIM | ID: wpr-279230

ABSTRACT

To clone the 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (TwMCT) full length cDNA from Tripterygium wilfordii, the specific primers were designed according to the transcriptome data and the LCPCR were carried out. After a series of bioinformatics analysis on the TwMCT, the MeJA induced expression content were investigated by real-time fluorescence quantification polymerase chain reaction (RT-qPCR). The result showed that the full of TwMCTcDNA was 1 318 bp nucleotides encoding 311 amino acids. The molecular weight of the deduced TwMCT protein was about 34.14 kDa and the theoretical isoelectric point was 8.65. Result of the RT-qPCR analysis indicated that the content of TwMCT mRNA expression in T. wilfordii suspension cell was rising after treating with MeJA and reached the maximum in 24 h. Cloning and analyzing TwMCT gene from T. wilfordii provided gene element for studying the function and expression regulation of secondary metabolites.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Erythritol , Metabolism , Gene Expression Regulation, Plant , Molecular Sequence Data , Nucleotidyltransferases , Chemistry , Genetics , Metabolism , Phylogeny , Plant Proteins , Chemistry , Genetics , Metabolism , Protein Structure, Secondary , Sequence Alignment , Sugar Phosphates , Metabolism , Tripterygium , Chemistry , Genetics
2.
Chinese Journal of Biotechnology ; (12): 64-75, 2014.
Article in Chinese | WPRIM | ID: wpr-242412

ABSTRACT

The pathway of 2-methyl-D-erythritol-4-phosphate (MEP) is the exclusive isoprenoid precursor biosynthetic pathway in Escherichia coli, with a higher theoretical yield than mevalonate (MVA) pathway. However, due to lack of information about the regulation of MEP pathway, only engineering MEP pathway in E. coli achieved limited improvement of heterologous isoprenoid production. We used exogenous MEP pathway genes to improve MEP pathway in E. coli and optimized the glucose feeding to release the potential of MEP pathway. The results demonstrate that co-expression of dxs2 from Streptomyces avermitilis and idi from Bacillus subtilis can increase amorphadiene production with 12.2-fold compared with the wild-type strain in shake flask fermentation. Then we established a high-cell density fermentation process for the engineered strain, and found that the phase from 24 to 72 h is important for product biosynthesis. The optimization of glucose feeding rate during 24 to 72 h significantly improved product accumulation, which was improved from 2.5 to 4.85 g/L, within the same process time. Considering the attenuation of strain metabolism after 72 h, this study further modulated the glucose feeding rate during exponential phase to control strain growth and the amorphadiene yield eventually reached to 6.1 g/L. These results provided useful information to develop engineered E. coli for isoprenoid production through MEP pathway engineering.


Subject(s)
Bacillus subtilis , Biosynthetic Pathways , Culture Media , Chemistry , Erythritol , Metabolism , Escherichia coli , Genetics , Metabolism , Genetic Engineering , Glucose , Chemistry , Industrial Microbiology , Sesquiterpenes , Metabolism , Sugar Phosphates , Metabolism , Terpenes , Metabolism
3.
IJB-Iranian Journal of Biotechnology. 2012; 10 (1): 22-31
in English | IMEMR | ID: emr-122603

ABSTRACT

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashige and Skoog [MS] medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressor of trehalose-6-phosphate [T6P] mediated growth arrest, GR-RBP2, is characterized in more detail. Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryotic origin. A knockout mutant of GR-RBP2 was identified in the T-DNA insertion line SALK-059714, yet plants of this line were not altered with regard to growth on different carbon sources and on trehalose compared to WT. GUS expression analysis showed that GR-RBP2 was detected in adult leaves, flowers and siliques. Expression was particularly high in root tips. GR-RBP2 expression also is insensitive to 100 mM trehalose. TAP-tagged versions of this protein showed that GR-RBP2 is part of a protein complex in planta


Subject(s)
RNA-Binding Proteins , Arabidopsis Proteins , Sugar Phosphates , Trehalose/analogs & derivatives , Growth , Phylogeny , Blotting, Western , Chromatography, Gel , Sepharose
4.
Tuberculosis and Respiratory Diseases ; : 1-10, 2012.
Article in English | WPRIM | ID: wpr-93562

ABSTRACT

Care of patients with sepsis has improved over the last decade. However, in the recent two years, there was no significant progress in the development of a new drug for critically ill patients. In January 2011, it was announced that the worldwide phase 3 randomized trial of a novel anti-Toll-like receptor-4 compound, eritoran tetrasodium, had failed to demonstrate an improvement in the mortality of patients with severe sepsis. In October 2011, Xigris (drotrecogin alfa, a recombinant activated protein C) was withdrawn from the market following the failure of its worldwide trial that had attempted to demonstrate improved outcome. These announcements were disappointing. The recent failure of 2 promising drugs to further reduce mortality suggests that new approaches are needed. A study was published showing that sepsis can be associated to a state of immunosuppression and loss of immune function in human. However, the timing, incidence, and nature of the immunosuppression remain poorly characterized, especially in humans. This emphasizes the need for a better understanding of sepsis as well as new therapeutic strategies. Many clinical experiences of the extracorporeal membrane oxygenator (ECMO) treatment for adult acute respiratory distress syndrome (ARDS) patients, which is caused by the H1N1 influenza A virus, were reported. The use of ECMO in severe respiratory failure, particularly in the treatment of adult ARDS, is occurring more commonly.


Subject(s)
Adult , Humans , Critical Care , Critical Illness , Disaccharides , Extracorporeal Membrane Oxygenation , Immunosuppression Therapy , Incidence , Influenza A virus , Oxygenators, Membrane , Protein C , Recombinant Proteins , Respiratory Distress Syndrome , Respiratory Insufficiency , Sepsis , Sugar Phosphates
5.
Mem. Inst. Oswaldo Cruz ; 102(3): 377-384, June 2007. graf, tab
Article in English | LILACS | ID: lil-452518

ABSTRACT

In Plasmodium falciparum, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway. Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our results indicate that MEP pathway metabolite peak precede maximum transcript abundance during the intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level. This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.


Subject(s)
Animals , Erythritol/analogs & derivatives , Erythritol/metabolism , Erythrocytes/parasitology , Fosfomycin/analogs & derivatives , Fosfomycin/pharmacology , Plasmodium falciparum/metabolism , Sugar Phosphates/metabolism , Genes, Protozoan , Polymerase Chain Reaction , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development
6.
Genet. mol. res. (Online) ; 3(1): 85-91, Mar. 2004.
Article in English | LILACS | ID: lil-417582

ABSTRACT

Chromobacterium violaceum presents a distinctive phenotypic characteristic, the production of a deep violet pigment named violacein. Although the physiological function of this pigment is not well understood, the sequencing of the genome of this bacterium has given some insight into the mechanisms and control of violacein production. It was found that erythrose-4-phosphate (E4P), a precursor to aromatic amino acid biosynthesis, is produced by the non-oxidative portion of the hexose monophosphate pathway, since it lacks 6-phosphogluconate dehydrogenase. All genes leading from E4P plus phosphoenolpyruvate to tryptophan are present in the genome. Nevertheless, these genes are not organized in an operon, as in E. coli, indicating that other mechanisms are involved in expression. The sequencing data also indicated the presence and organization of an operon for violacein biosynthesis. Three of the four gene products of this operon presented similarity with nucleotide-dependent monooxygenases and one with a limiting enzyme polyketide synthase. As previously suggested, genes encoding proteins involved in quorum sensing control by N-hexanoyl-homoserine-lactone, an autoinducer signal molecule, are present in the bacterial genome. These data should help guide strategies to increase violacein biosynthesis, a potentially useful molecule


Subject(s)
Chromobacterium/genetics , Indoles/metabolism , Chromobacterium/metabolism , Multienzyme Complexes/biosynthesis , Multienzyme Complexes/genetics , Sugar Phosphates/genetics , Sugar Phosphates/metabolism , Carboxylic Ester Hydrolases/biosynthesis , Carboxylic Ester Hydrolases/genetics , Indoles/chemistry , Tryptophan/biosynthesis , Tryptophan/genetics
SELECTION OF CITATIONS
SEARCH DETAIL